Statistical Mechanics of High Dimensional Inference Supplementary Material

نویسندگان

  • Madhu Advani
  • Surya Ganguli
چکیده

2 Deriving inference error from the statistical physics of disordered systems 2 2.1 Replica equations at finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Replica equations in the low temperature limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Moreau envelope formulation of the replica equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Accuracy of inference from the perspective of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Noise-free replica equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially varying SAR models and Bayesian inference for high-resolution lattice data

We discuss a new class of spatially varying, simultaneous autoregressive (SVSAR) models motivated by interests in flexible, non-stationary spatial modelling scalable to higher dimensions. SVSARmodels are hierarchical Markov random fields extending traditional SARmodels. We develop Bayesian analysis usingMarkov chain Monte Carlo methods of SVSARmodels, with extensions to spatio-temporal contexts...

متن کامل

Delamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach

Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...

متن کامل

An equivalence between high dimensional Bayes optimal inference and M-estimation Supplementary Material

A Useful properties of the Moreau envelope and proximal map 14 A.1 Relation between proximal map and Moreau envelope . . . . . . . . . . . . . . . . 14 A.2 Relation between proximal map and derivative . . . . . . . . . . . . . . . . . . . . 15 A.3 Inverse of the Moreau envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 A.4 Moreau envelope for additive noise model . . . . . . . ...

متن کامل

Statistical Mechanics of High-Dimensional Inference

To model modern large-scale datasets, we need efficient algorithms to infer a set of P unknown model parameters from N noisy measurements. What are fundamental limits on the accuracy of parameter inference, given finite signal-to-noise ratios, limited measurements, prior information, and computational tractability requirements? How can we combine prior information with measurements to achieve t...

متن کامل

Supplementary Material for Statistical inference for noisy nonlinear ecological dynamic systems

1 Method Implementation and MCMC output 1 1.1 Ricker model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Blowfly models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Demographic stochasticity only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Alternative blowfly model . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016